www.my.mainscloud.com

GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper H

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper H - Marking Guide

1. (a)
$$\sum xP(x) = \frac{1}{8}k + \frac{3}{8}(k+4) + \frac{1}{2}(2k) = \frac{3}{2}(k+1)$$

(b)
$$\frac{3}{2}(k+1) = 9; k=5$$

(8)

3. (a)
$$1 - 0.22 = 0.78$$

(b)
$$0.78 - 0.35 = 0.43$$

(c)
$$\frac{P(A \cap B)}{P(A)} = \frac{0.7 - 0.43}{0.7} = 0.386 \text{ (3sf)}$$

(d) not independent as e.g.
$$P(B \mid A) \neq P(B)$$

4. (a)
$$P(Z < \frac{127 - 122.3}{2.6}) = P(Z < 1.81) = 0.9649$$

(b)
$$P(Z < \frac{121.5 - 122.3}{2.6}) = P(Z < 0.31) = 0.3783$$

(c)
$$P(Z < \frac{454 - \mu}{1.6}) = 0.05$$

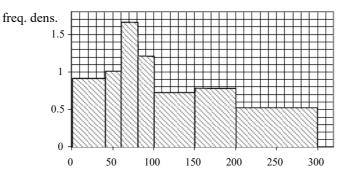
$$\frac{454-\mu}{1.6}$$
 = $^{-}1.6449$; μ = 456.6 (4sf)

$$P(V=1) = 3 \times \frac{5}{12} \times \frac{7}{11} \times \frac{6}{10} = \frac{21}{44}$$

(b)
$$P(V=0) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} = \frac{7}{44}$$

$$P(V=2) = 3 \times \frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} = \frac{7}{22}$$

$$P(V=3) = \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{1}{22}$$


$$\begin{array}{c|cccccc} v & 0 & 1 & 2 & 3 \\ \hline P(V=v) & \frac{7}{44} & \frac{21}{44} & \frac{7}{22} & \frac{1}{22} \end{array}$$

(c)
$$E(V) = \sum vP(v) = 0 + \frac{21}{44} + \frac{14}{22} + \frac{3}{22} = \frac{5}{4}$$

$$E(V^2) = \sum v^2 P(v) = 0 + \frac{21}{44} + \frac{28}{22} + \frac{9}{22} = \frac{95}{44}$$

$$Var(V) = \frac{95}{44} - (\frac{5}{4})^2 = \frac{105}{176}$$
 or 0.597 (3sf)

6. (a) freq. dens. = 0.9, 1, 1.65, 1.2, 0.72, 0.78, 0.52

B2

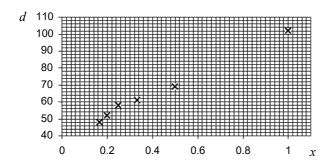
M1 A1

no. of people

(b) cum. freqs: 36, 56, 89, 113, 149, 188, 240
$$Q_1 = 60^{th} = 60.5 + 20(\frac{4}{33}) = 62.9 [60.25^{th} \rightarrow 63.1]$$

$$Q_2 = 120^{th} = 100.5 + 50(\frac{7}{36}) = 110.2 [120.5^{th} \rightarrow 110.9]$$

$$Q_3 = 180^{th} = 150.5 + 50(\frac{31}{39}) = 190.2 [180.75^{th} \rightarrow 191.2]$$


M1

M2 A3

(c)
$$Q_3 - Q_2 = 80.0$$
, $Q_2 - Q_1 = 47.3$; $Q_3 - Q_2 > Q_2 - Q_1$: +ve skew

M2 A1 (13)

M1 A1

В3

(b) the points lie roughly on a straight line

B1

(c)
$$S_{xd} = 189.733 - \frac{2.45 \times 390}{6} = 30.483$$

$$S_{xx} = 1.491 - \frac{2.45^2}{6} = 0.490583$$

M1

$$b = \frac{30.483}{0.490583} = 62.136$$

M1 A1

$$a = \frac{390}{6} - (62.136 \times \frac{2.45}{6}) = 39.628$$

M1 A1

$$d = 39.6 + 62.1x$$

A1

(d)
$$m = 13$$
, $x = \frac{1}{13}$; $d = 39.6 + (62.1 \times \frac{1}{13}) = 44.4$, so 44 cases

M2 A1

- (e) not very reliable as it requires extrapolation well outside the data
- B1

Total (75)

(17)

Performance Record – S1 Paper H

1	2	3	4	5	6	7	Total
discrete r. v.	modelling, normal dist.	probability	normal dist.	discrete r. v.	histogram, interpol'n	scatter diagram, regression	
5	8	9	10	13	13	17	75
	discrete r. v.	discrete modelling, normal dist.	discrete modelling, probability normal dist.	discrete modelling, probability normal dist.	discrete modelling, normal discrete r. v. normal dist. r. v.	discrete modelling, normal discrete normal dist. modelling, normal dist. probability normal dist. normal dist. normal dist. normal dist. normal dist.	discrete modelling, normal dist. modelling, normal dist. probability normal dist. normal dist. histogram, interpol'n diagram, regression